Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.

Municipal Solid Wastes : Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Geometric Design of Railway Track – Speed and Cant.

Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design. Highway Pavements: Highway materials - desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes

Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system; Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves Photogrammetry and Remote Sensing - Scale, flying height; Basics of remote sensing and GIS.

value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb’s phase rule and degree of freedom analysis.

First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

Fluid statics, surface tension, Newtonian and non-Newtonian fluids, transport properties, shell- balances including differential form of Bernoulli equation and energy balance, equation of continuity, equation of motion, equation of mechanical energy, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, velocity profiles, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

Equation of energy, steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations; design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Fick’s laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption, membrane separations(micro-filtration, ultra-filtration, nano-filtration and reverse osmosis).

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, kinetics of enzyme reactions (Michaelis-Menten and Monod models), non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis; rate and performance equations for catalyst deactivation

Measurement of process variables; sensors and transducers; P&ID equipment symbols; process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; transducer dynamics; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as heat exchangers and multistage contactors.

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction

pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage;

I/O interface (interrupt and DMA mode).

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm

design techniques: greedy, dynamic programming and divide‐and‐conquer. Graph traversals,

minimum spanning trees, shortest paths

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimisation, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination.

System calls, processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory.File systems.

ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints,normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit- switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.

Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations.

P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.

Basic Control System Components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

Fundamentals of error correction, Hamming codes, CRC.

Rectangular and Circular Waveguides, light propagation in opticalfibers, dipole and monopole antennas, linear antenna arrays.

Taylor series, Laurent series, Residue theorem, Solution integrals.

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law,Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Representation of continuous and discrete time signals, shifting and scaling properties, linear time invariant and causal systems, Fourier series representation of continuous and discrete time periodic signals, sampling theorem, Applications of Fourier Transform for continuous and discrete time signals, Laplace Transform and Z transform. R.M.S. value, average value calculation for any general periodic waveform.

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines

Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐ current, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. transient analysis of RLC circuits with ac excitation.

One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, PI, PID, cascade, feedforward, and ratio controllers, tuning of PID controllers and sizing of control valves.

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of ideal and practical operational amplifiers; applications of opamps: adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, precision rectifier, active filters, oscillators, signal generators, voltage controlled oscillators and phase locked loop, sources and effects of noise and interference in electronic circuits.

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, Embedded Systems: Microprocessor and microcontroller applications, memory and input- output interfacing; basics of data acquisition systems, basics of distributed control systems (DCS) and programmable logic controllers (PLC).

SI units, standards (R,L,C, voltage, current and frequency), systematic and random errors in measurement, expression of uncertainty - accuracy and precision, propagation of errors, linear and weighted regression. Bridges: Wheatstone, Kelvin, Megohm, Maxwell, Anderson, Schering and Wien for measurement of R, L, C and frequency, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement. 4-20 mA two-wire transmitter.

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, quadrature amplitude, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor, square law detectors and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing. UV-VIS Spectro photometers, Mass spectrometer.

theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green’s theorems.

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and Eigen vectors.

theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives; Line, Surface and Volume integrals; Stokes, Gauss and Green’s theorems.

Reliability and Maintenance:

Textile Engineering and Fibre Science

Classification of Textile Fibres; Essential requirements of fibre forming polymers; Gross and fine structures of natural fibres like cotton, wool, silk; Introduction to bast fibres; Properties and uses of natural and man-made fibres including carbon, aramid and ultra-high molecular weight polyethylene fibres; Physical and chemical methods of fibre and blend identification and blend analysis.

Molecular architecture, amorphous and crystalline phases, glass transition, plasticization, crystallization, melting, factors affecting Tg and Tm; Polymerization of nylon-6, nylon-66, poly (ethylene terephthalate), polyacrylonitrile and polypropylene; Melt spinning processes for PET, polyamide and polypropylene; Preparation of spinning dope; Principles of wet spinning, dry spinning, dry-jet-wet spinning and gel spinning; Spinning of acrylic, viscose and other regenerated cellulosic fibres such as polynosic and lyocell; Post spinning operations such as drawing, heat setting, tow-to-top conversion;Spin finish composition and applications; Different texturing methods.

Methods of investigating fibre structure such as density, x-ray diffraction, birefringence, optical and electron microscopy such as SEM and TEM, I.R. spectroscopy, thermal methods such as DSC, DMA, TMA and TGA; Structure and morphology of man-made fibres; Mechanical properties of fibres; Moisture sorption of fibres; Fibre structure-property correlation.

Yarn Manufacture, Yarn Structure and Properties

Principles of ginning; Principles of opening, cleaning and blending; Working principles of modern blow room machines; Fundamentals of carding; Conventional vs. modern carding machine; Card setting; Card clothing; Periodic mass variation in card sliver; Card auto leveller;

Influence of fibre geometry, fibre configuration and fibre orientation in yarn; Fibre packing density of yarn; Yarn diameter; Yarn twist and its relation to yarn strength; Helical arrangement of fibres in yarns; Yarn contraction; Fibre migration in yarns; Stress-strain relation in yarn; Mass irregularity of yarn; Structure-property relationship in ring, compact, rotor, air-jet and friction spun yarns.

Principles of winding processes; Classification of winding methods; Patterning mechanism; Yarn clearers and tensioners; Different systems of yarn splicing; Warping objectives and classification; Different types of warping creels; Features of beam and sectional warping machines; Different sizing systems; Sizing of spun and filament yarns;Drawing-in process; Principles of pirn winding.

Primary and secondary motions of loom; Shedding motion; Positive and negative shedding mechanisms; Type of sheds; Tappet, dobby and jacquard shedding; Weft insertion; Mechanics of weft insertion with shuttle; Shuttle picking and checking; Beat-up; Kinematics of sley; Loom timing diagram; Cam designing; Effect of sley setting and cam profile on fabric formation; Take- up and Let-off motions; Warp and weft stop motions; Warp protection; Weft replenishment; Principles of weft insertion systems of shuttle-less weaving machines such as projectile, rapier, water-jet and air-jet; Principles of functioning of multiphase and circular looms; Types of selvedges.

Basic woven fabric constructions and their derivatives; Crepe, cord, terry, gauze, leno and double cloth constructions; Drawing and lifting plans.

Fundamentals of weft knitting; Classification of weft knitting technologies; Weft knitted constructions such as plain, rib, interlock and purl; Different knit stitches such as loop, tuck and float.

Principle of warp knitting; Classification of warp knitting technologies; Swinging and shogging motion of guide bar; Basic warp knit construction such as pillar, tricot, atlas, inlay and nets.Fibre preparation processes for nonwovens; Web formation and bonding processes;Spun-bonding and melt-blowing technologies; Applications of nonwoven fabrics.

Principles of braiding; Type of braids; Maypole braiding technology.

Peirce’s equations for plain woven fabric geometry; Elastic a model of plain-woven fabric; Thickness, cover and maximum set of woven fabrics; Geometry of plain weft knitted loop; Munden’s constants and tightness factor for plain weft knitted fabrics; Geometry of tubular braids.

Textile Testing

Sampling techniques for fibres, yarns and fabrics; Sample size and sampling errors.

Moisture in textiles; Fibre length, fineness, crimp, maturity and trash content; Tensile testing of fibres; High volume fibre testing.

Linear density of sliver, roving and yarn; Twist and hairiness of yarn; Tensile testing of yarns; Evenness testing; Fault measurement and analysis of yarns.

Fabric thickness, compressibility, stiffness, shear, drape, crease recovery, tear strength, bursting strength, pilling and abrasion resistance; Tensile testing of fabrics; Objective evaluation of low stress mechanical characteristics; Air permeability; Wetting and wicking; Water-vapour transmission through fabrics; Thermal resistance of fabrics.

Impurities in natural fibre; Singeing; Chemistry and practice of preparatory processes for cotton; Preparatory processing of wool and silk; Mercerization of cotton; Preparatory processesfor manmade fibres and their blends; Optical brightening agent.

Classification of dyes; Dyeing of cotton, wool, silk, polyester, nylon and acrylic with appropriate classes of dyes; Dyeing of polyester/cotton and polyester/wool blends; Dyeing machines; Dyeing processes and machines for cotton knitted fabrics;Dye-fibre interaction;Introduction to thermodynamics and kinetics of dyeing; Brief idea about the relation between colour and chemical constitution; Beer-Lambert’s law;Kubelka-Munk theory and its application in colour measurement; Methods for determination of wash, light and rubbing fastness.

Methods of printing such as roller printing and screen printing; Preparation of printing paste; Various types of thickeners; Printing auxiliaries; Direct styles of printing of (i) cotton with reactive dyes, (ii) wool, silk, nylon with acid and metal complex dyes, (iii) polyester with disperse dyes; Resist and discharge printing of cotton, silk and polyester; Pigment printing; Transfer printing of polyester; Inkjet printing; Printing faults.

Mechanical finishing of cotton; Stiff, soft, wrinkle resistant, water repellent, flame retardant and enzyme (bio-polishing) finishing of cotton; Milling, decatizing and shrink resistant finishing of wool; Antistatic and soil release finishing; Heat setting of synthetic fabrics; Minimum application techniques.

Pollution control and treatment of effluents.